@ff.entity
class User:
avg_transactions = ff.Feature(
average_user_transaction[["CustomerID", "TransactionAmount"]],
variant="quickstart",
type=ff.Float32,
inference_store=redis,
timestamp_column="timestamp",
)
fraudulent = ff.Label(
transactions[["CustomerID", "IsFraud"]],
variant="quickstart",
type=ff.Bool,
timestamp_column="timestamp",
)
ff.register_training_set(
"fraud_training",
"quickstart",
label=("fraudulent", "quickstart"),
features=[("avg_transactions", "quickstart")],
)
client.apply()
# The training set's feature values will be point-in-time correct.
ts = client.training_set("fraud_training", "quickstart").dataframe()